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Abstract—In this paper, a theoretical analysis of laminar mixed convection around a rotating sphere in a

stream is presented. The results show the effects of the viscous dissipation in the boundary layer. A new

correlation for the average Nusselt (Sherwood) number is presented for a Prandtl (Schmidt) number

ranging from 0.7 to 2730 and negligible dissipative effects. This correlation is validated with numerical and

experimental results. It can be used for the entire mixed convection regime, under buoyancy assisting flow
and uniform wall temperature conditions.

1. INTRODUCTION

IN THE field of published results about heat and mass
transfer over axisymmetric bodies, the special case of
the sphere has received much attention. Several simple
correlations and experimental data for the average
Nusselt number for both laminar free and forced con-
vection around a non-rotating sphere have been pre-
sented [1, 2]). The average Sherwood number for a
rotating sphere placed in a uniform stream with its
axis of rotation parallel to the free stream velocity was
measured by Furuta et al. [3]. This type of flow was
also theoretically studied by Lee ef al. [4].

The linkage of the three flows (i.e. free convection,
forced stream and rotation) has been investigated
more recently [5, 6]. The laminar three-dimensional
boundary layer over a rotating sphere in forced flow
with an arbitrary angle B; between the direction of
the stream and the axis of rotation was theoretically
studied by using a Gortler type of series [7, 8]. It
was found that the average Nusselt number slowly
increases with increasing 8, but this change is too low
to be experimentally validated. The theoretical results
were also compared with electrochemical measures
for the axial flow case (i.e. §; = 0) and the agreement
between theory and data was satisfactory [9, 10].

A survey of the literature shows that no useful cor-
relation for the average heat (mass) transfer coefficient
has been proposed for the mixed convection regime
under axial flow conditions. This is the purpose of this
paper in which the viscous dissipation effects on mixed
convection are also studied in order to point out the
limitations of the correlation. From comparison with
the previous published results [5, 7-10], equations and
results referring to the correlation coefficients are new.

2. THEORETICAL ANALYSIS

Consideration is given to steady, laminar, dissi-
pative, constant properties (except the density
changes) and incompressible boundary-layer flow

around a sphere which is maintained at uniform sur-
face temperature T,,. This sphere rotates in a uniform
flow with oncoming free stream velocity U, and tem-
perature 7T,,. The axis of rotation is parallel to the
direction of the stream which moves upward while
gravity g, acts in the opposite direction. A non-rotat-
ing orthogonal curvilinear coordinate system x, y, 0
is chosen, as shown in Fig. 1. Let V,, V,, V, be the
corresponding velocity components. The boundary-
layer equations can be written as

ov, oV, V,.dr
EC—+F_}1—+TE_0 6))
v, ov, Vidr
TV T &
dv  #*v, .
= Ua;"i‘v‘_ayz igaﬂ!(T—Tw)Slnﬁ (2)
v, Wy VVedr 3%V,
v, x+Vyﬁy+ r a_vayz 3
or or T v |[{ov.\V [oV,\
V. — Ly | s
ALY “ay2+c,[<ay>+<ay '
@
The boundary conditions are
y=0;, T=T, V.=V,=0, Vi=ro
y—ow; T-T,, V-0, V.- U. 6)]

In the foregoing equations, w is the angular velocity
of the sphere whereas U is the local free stream velocity
which can be expressed from the potential-flow theory
as[11]

x

3 .
U=5Uoo Slnz (6)

where L is the radius of the sphere. The radial distance
from a surface point to the axis of rotation is
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NOMENCLATURE

B rotation parameter defined by equation Sh;  average Sherwood number for pure forced
8 __ convection

C,  specific heat at constant pressure Sh, average Sherwood number for pure free
Dkg™'K] __ convection

E.  Eckert number, U2 JC (T, —T,) Sh,  average Sherwood number for pure

f(&,mn), g(e,n) reduced stream functions rotation

defined in Table 1
g.  gravitational acceleration [ms™?]
Gr  Grashof number defined by equation (9),
L radius of the sphere [m]
Nu  local Nusselt number
Nu  average Nusselt number for mixed

convection

Nu; average Nusselt number for pure forced
convection

Nu, average Nusselt number for pure free
convection

Nu, average Nusselt number for pure rotation

Pr  Prandtl number

r radial distance from the axis of rotation
[m]

Re_,, Re, Reynolds numbers defined by

equations (9)

Sc¢  Schmidt number

Sh  average Sherwood number for mixed
convection

T fluid temperature [K]
U  local free velocity [ms™']
» V.. Ve velocity components for the x-, y-
and 0-directions [ms™']
x,»,0 coordinates shown in Fig. 1 [m].

Greek symbols
o thermal diffusivity of the fluid [m?s™')
B, coefficient of thermal expansion [K ']
¢, adimensional coordinates defined in

Table 1

0, reduced temperature defined in Table |
v kinematic viscosity [m?s~']
w spin velocity of the sphere [rads™']
Q Richardson number defined by equation

®):

Subscripts
W condition at wall
o0 free stream condition.

[yw

’
|
|
|
|

T
B

uwv TG

F1G. 1. The coordinates system.

X
r= Lsmz. )

The other symbols in equations (1)—(4) are defined in
the Nomenclature. For the entire mixed convection

regime, three flow dominated cases can be defined
from the values of the rotation parameter B and the
Richardson number Q [8]:

(1) the buoyancy force dominated case for Q > 1
and B< Q;

(2) the rotation dominated case for B> 1 and
B>Q;

(3) the forced flow dominated case for B < 1 and
Q<1

The definitions of B and Q being, respectively

4 /Loy 4 Re,\ Gr
B=§(z};> =§(‘Re,'>~ Q=g ®

with

T,~T,)L®
= g—‘—————-——'*ﬂt( ud 3 DO) y Rew =, .
v v v

Gr

Equations (1)-(5) are now transformed by intro-
ducing a (g,n) dimensionless coordinate system, the
reduced stream functions f(¢,%) and g(e,7) and a
dimensionless temperature 6;(¢,%). The appropriate
definitions of these parameters for each of the three
above-cited cases are summarized in Table 1, where
W(x,v) and ¢(x, y) are the stream functions which are
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Table 1. Definitions of dimensionless coordinates, reduced stream functions and reduced
temperature for the three flow dominated cases

Buoyancy forces
dominated case

Forced flow
dominated case

Rotation
dominated case

£ x/L x/L x/L
/2 U 1/2
G wR]' v
1 ’ L l: ve Y Lve y
Y(x,y) m(x, y) n(x,y)
f(s’ 7’) &y Gr1/4 wry yU
@n) é(x,7) ne(x.») 1o, )
gien ev Gri/* wry wry
T-T, T—T, r-T,
O+ (e, m) T.oT, 7. T T,
related to the velocity components with the following Or(e,m) = 5 Or2 (e
equations: e

v, = 1 oy (x, y)r
r 0Oy
_ Loy(x, pr
BET T
o¢(x,
V, = ﬂa’;l). (10)

With these transformations, the continuity equation
is identically satisfied. The momentum and energy
equations become

f"'+K1ff"—K2f'2+K3g'2+K497~+K5

Iaf/ Ilaf_
s’/ 77 r Iag, /laf_
9" +Kifg"—Ksf'g —s[f e 9 % | (12)
Pr'07+K, f0r+K,; 9+ Ky 2
,00r  Of
= lf 'a;—%a (13)
subjected to the boundary conditions
”=0: f=f/=g:=0, g/=K9; 0T=l
n—oo0: f'>Ky; g -0, 6r-0.
(14

The coefficients K, K,, ..., K, are given in Table 2
and the primes denote differentiation with respect to
n. Equations (11)-(14) are now transformed by
assuming that the functions (¢, 1), g(¢, %) and 0,(¢c, )
have the following expansions :

mm=immﬁ

g(em = X gz (15)
i=

Substituting equations (15) in equations (11)-(13)

and boundary conditions (14) and collecting terms of

different order in &, as usual, a sequence of coupled

ordinary differential equations is obtained [7]. From

the definition of the Nusselt number

oT
==
_ (ay)y=0

T.—T. (16)

it can be shown that the local Nusselt number is ex-
pressed as (N =0,2,4,...):

(1) buoyancy forces dominated case

Nu=—Gr'/* ¥ 075(0)e"; an
N=0
(2) rotation dominated case
: 1/2 o
Nu=— (Remﬁ) Y 05(0);  (18)
& N=0

(3) forced flow dominated case

3sin e>”2 il

Nu= — (Rew 3 Y 0w @Y. (19)
€ N=0

The average Nusselt number, Nu, is obtained from
the integral

— 1
Nu= —j NudS (20)
SJs

where S is the area of the sphere.



2350

G. LE PaLec

Table 2. Definitions of coefficients K, K,, ..., Ko which appear in equations (11)-(13)
and boundary conditions (14)

Buoyancy forces
dominated case

K, 1+ecote

K, 1
K, scote
sing
K, —_—
€
e 9 cosesine ,
4 €
K, l+ecote
K, QE.’B
K, QF.¢*
sing B
K S— —
Ki, 1550 g1
g

3. NUMERICAL RESULTS

The set of coupled ordinary differential equations
has been solved with the fourth-order Runge-Kutta—
Gill procedure. Four terms of series (15) are sufficient
to get a good accuracy. As it is seen from equations
(11)~(13) and boundary conditions (14), the local
Nusselt number is correlated to the following
adimensional parameters :

(a) the rotation parameter B;
(b) the Richardson number €,
(¢) the Eckert number E,;

(d) the Prandtl number Pr.

Numerical calculations were performed for 0 < B
<100, 0<Q<1000, 0<E <001 and 1 < Pr<
2730. o

In Fig. 2, the average Nusselt number Nu Re; '/* is
plotted against Q for Pr = 1 and several values of B
and E_: the average heat transfer rate is seen to
increase as the Richardson number increases for small
values of the rotation parameter (B = 1) and neg-
ligible dissipative effects (E, = 0). The increase of
NuRe;Y* appears lower as the angular velocity is
higher (B = 10) and it becomes negligible for B = 100,
the centrifugal forces then being too high as compared
with the buoyancy forces. As shown in the figure for
B =1 and 10 and E_, = 0.005 and 0.01, the viscous
dissipation in the boundary layer produces smaller

dominated case

Forced flow
dominated case

Rotation

0.5+ 1.5¢cote 0.5+ 1.5¢cote

gcote scote
£cole Becote
Gr ¢ 4 e
Re? sineg 9™ sine
B 'gcote 0
2ecote 2ecote
9EB in? 9EB in?
7 sin’ ¢ gk sin’ ¢
9EB in’ 9E in?
JE sin® ¢ i . §in” &
1 1
B2 1

values of the average Nusselt number and dissipative
effects increase with an increasing angular velocity.
For B = 100, these effects become higher than the
buoyancy force ones and the heat transfer rate is lower
for mixed convection (€ = 10) than for the pure
rotation case (Q — 0). The shape and values of the
profiles depend on the Prandtl number as shown in
Figs. 3 and 4 where NuRe;"? has been reported
against Q for Pr = 10 and 100, respectively. It is noted
that an increase of the Prandtl number yields an
increase in the viscous dissipation effects.

4. THE CORRELATION

For many heat-iransfer applications, the viscous
dissipation in the boundary layer is negligible so that
E_ can be set equal to zero in the governing equations.
A general correlation for the average Nusselt number
has been developed with this assumption: the re-
sults that appear in Figs. 2-4 enable the limitations
of such an equation to be seen for most practi-
cal cases (Pr < 100). For higher Prandtl! numbers
(100 < Pr < 2730), numerical calculations were per-
formed for 0 < B < 25 and 0 < Q < 100 and the vis-
cous dissipation was found negligible for E, < 0.0001.
As discussed before, the average Nusselt number Nu
is correlated to the Prandtl number, the Richardson
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FiG. 2. Average Nusselt number vs Q for Pr=1:
E, =0.005; ——

e

E, =0.005; —-—

number and the rotation parameter when E, = 0.
From definitions (8) and (9), it is seen that

1/4

@1

Following the analysis of Churchill and Usagi [12,
13], the average Nusselt number is assumed to be
correlated to the average Nusselt number for pure free
convection Nu,, the average Nusselt number for pure
rotation Nu, and the average Nusselt number for pure
forced convection Nu;. One thus can write

Nu™ = Nu' + Nu + Nu? 22

where m is a constant exponent to be determined
by comparing the correlation with the theoretically

predicted results. Similarly, for mass transfer studies,
the average Sherwood number equation is

Sh™ = Sh? + Sk + SH?. 23)
It should be noted that no theoretical basis allows one
to write the average Nusselt (Sherwood) number as
an average, because the differential equations system
(11)—(13) is highly nonlinear. However, most of the
correlating equations that have been proposed for
other geometries have utilized the sum of some arbi-
trary power of correlating equations for the flow
limited cases. Such equations appear to be gener-
ally satisfactory for mixed convection. The main
differences between these correlations concern the
value of the exponent m and the effect of the Prandtl
number [13].
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0.1
Fic. 4. Average Nusselt number vs Q for Pr = 100: » Ee=0; ———, E,=0.001; ———,
E, =0.005; —-—-— ,E.=001.
Numerical results which were obtained in the range  with
1 £ Pr < 2730 lead to the followi lations :
r ead to the following relations . 1 —0.33pr 04
for the pure free convection case (Q — oo, B = 0) A,(Pr) = 1—0.16Pr %
Nu, Gr= Y% = 0.57Pr/4(1—0.16Pr~°8); (24) 1—0.09Pr %3
Ay(Pry = —————53 29
1-0.16Pr="

for the pure rotation case (2 = 0, B — «0)
Nu, Re;"'? = 0.46Pr'>(1-0.33Pr%*); (25)
for the pure forced convection case (2 = 0, B = 0)
Nu; Re; V% = 0.81Pr/3(1—0.09Pr%5). (26)

The discrepancies between the theoretical and cor-
related values are listed in Table 3: one can see that
the accuracy is good. The maximum deviation is
2.03% for Pr = 10 for the free convection case.

The limited cases, correlations (24)—(26) and equa-
tion (21), are now introduced in eguation (22). One
obtains

Nu = 0.57(PrGr)"*(1-0.16Pr~"*)

x [1+D(Q, B, PH1"™ (27)
where the function D(Q, B, Pr) is defined as
proit?
D(Q, B, Pr) = A(P’)ﬁm—/r [(0.988A4 (Pr)B'*)"
+(1.4214,(Pr)"] (28)

Table 3. Discrepancy (%) between predicted and correlated
values for the flow limited cases

Pure free Pure Pure forced

Pr convection rotation convection
1 0.25 0.58 0.40
10 2.03 1.29 0.24
100 0.84 0.65 0.03
2730 0.002 1.40 0.35

In equation (28), A(Pr) is a correcting factor which
takes into account the fact that fluids with lower
Prandtl numbers have a higher sensitivity to buoyancy
forces in comparison to fluids with higher Prandtl
numbers.

5. RESULTS AND DISCUSSION

From the comparison of correlated and numerically
predicted values, one has

m=73

A(Pr) = 0.862Pr 01, (30)

When no buoyancy forces occur, A(Pr) should be
taken as unity and Q can easily be removed from
equation (27) by introducing equations (21). It should
be noted that the value of exponent m is the same as
Armaly et al. found for the case of mixed convection
over vertical, horizontal and inclined flat plates [14].
Figure 5 shows the ratio (Nu/Nu,)® as a function of
the rotation parameter B for Pr = 1 and 10 and for
several Richardson numbers (Q = 0.1, 1, 10, 100). On
Fig. 6 correlated values with a higher Prandtl number
(Pr = 100 and 2730) have been reported. For all flow
configurations, the results obtained from equation
(27) and theory agree with each other. The maximum
deviation (7%) is observed for Q@ = 1, Pr = 2730 and
B < 1: the correlation then provides smaller values
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EQUATION (27)

TRERRY

100

FIG. 5. Average Nusselt number for the mixed convection regime: comparison between correlated and
numerical values, Pr = [ and 10.

]’

Pro 108 {Pr-3730

h

EQUATION (27}

THEORY

o

1 i

0.1 1

10

F1G. 6. Average Nusselt number for the mixed convection regime: comparison between correlated and
numerical values, Pr = 100 and 2730.

than numerical calculations. For the rotation domi-
nated case (B > 10), the discrepancy is less than 3%
which is the same as for all other flow configurations.

As in refs, {2, 14], the upper and lower bounds of
the mixed convection regime can be quantified by
specifying a 5% departure from the three limited aver-
age Nusselt number cases. The resulting curves and
flow configurations for Pr =1 and 10 are shown in
Fig. 7. The mixed convection regime is seen to occur
for a wide range of buoyancy and rotation parameter
values. Consequently, the pure forced comvection,
pure rotation and pure free convection regimes only
exist under rather restrictive conditions.

Since the correlation has been validated, all the
results can now be presented in a single figure the

KT 31:13-K

coordinates X and Y of which are

0.75 /R m- 123
X = A(Pr) (22) (_.._—jy-"mm' Res )
4 Nu, Gr—Y*

—on[(2) ]
Y=Q [(ﬁ . 31

Figure 8 shows a logarithmic presentation of the
curves which were obtained. From this figure and the
knowledge of Pr, B and Q, the average Nusselt num-
ber for the mixed convection regime can quickly be
found by only using equation (24). For Pr = 2730,
one also has reported some experimental data which
were carried out from an electrochemical method [10} :
the ratios X and Y then stand for
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F1G. 7.-The field of flow configurations with a B vs ) logarithmic representation.
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FiG. 8. Correlated results with X and Y coordinates and comparison of results with experimental data for
Sec = 2730.

9B 0.75 ‘;Z R ~1f2\3
X = A(Se) <w) (i—ii‘t—)
4 Shy Gr=11*

reas[(3) ]
Sh,

wherein Sc is the Schmidt number. The figure exhibits
a reasonable agreement with the correlated values,
especially for the rotation dominated case. For small
values of the rotation parameter, the correlation devi-
ates from experimental results. As explained in ref.
[8], this discrepancy may be attributed both to the
separation flow and the hypothesis of the potential-
flow solution which was retained for theoretical cal-
culations. It also should be noted that the linear
assumption for the average Sherwood number {equa-
tion (23)) is a possible manifestation of this fact.

(32)

Before concluding this section, one must add that
although the correlation is based upon numerical cal-
culations in the range 1 < Pr < 2730, equation (27)
has been tested for the case of air (Pr=0.7): the
results show a 9% maximum departure from numeri-
cal results for B = 100 and Q = 10. The discrepancy
is about 3% for B=10 and 1% for B= 1. These
results together with the previous results show that
the proposed correlation may be applied in most
of the practical cases embodied in laminar mixed
convection.

6. CONCLUSION

A simple correlation for the average mixed con-
vection Nusselt number for a rotating sphere placed in
a uniform stream has been presented. This correlation
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has been tested for the entire mixed convection
regime : it can be used under laminar buoyancy assist-
ing flow and uniform wall temperature conditions for
0.7 < Pr < 2730, all positive values of B and Q and
negligible viscous dissipation effects (E.=0). The
results show a good agreement between the correlated
and numerically predicted values. For non-negligible
dissipative effects, Figs. 2-4 allow one to set the limi-
tations of the formula.
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CORRELATION NOUVELLE POUR LA CONVECTION MIXTE LAMINAIRE AUTOUR
D’UNE SPHERE EN ROTATION

Résumé—On présente une analyse théorique de la convection mixte laminaire autour d’une sphére en

rotation dans un écoulement forcé. Les résultats mettent en évidence I'influence de la dissipation visqueuse

dans la couche limite. On propose aussi une corrélation donnant le nombre de Nusselt (Sherwood) moyen

pour un nombre de Prandt] (Schmidt) compris entre 0,7 et 2730 et des effets dissipatifs négligeables. Cette

relation est validée par les résultats numériques et expérimentaux. Elle peut étre utilisée dans la totalité du

domaine de convection mixte sous réserve que I’écoulement forcé ait la méme direction que les forces de
gravité et que la température de paroi soit constante.

EINE NEUE KORRELATION FUR DIE LAMINARE MISCHKONVEKTION AN EINER
ROTIERENDEN KUGEL

Zusammenfassung—FEs wird eine theoretische Untersuchung der laminaren Mischkonvektion an einer
angestromten rotierenden Kugel vorgestellt. Die Ergebnisse zeigen den EinfluB der Reibungsverluste in
der Grenzschicht. Es wird eine neue Korrelation fiir die mittlere Nusselt- (Sherwood-)Zahl vorgestellt fiir
Prandtl- (Schmidt-)Zahlen im Bereich von 0,7 bis 2730 und vernachlissigbare Dissipation. Diese Bezichung
wird mit numerischen und experimentellen Daten bestitigt. Sie kann fiir das gesamte Gebiet der Misch-
konvektion angewandt werden bei auftriebsunterstiitzter Strémung und einheitlicher Wandtemperatur.

HOBOE COOTHOMEHME AJ1s1 CMELIAHHON JIAMUHAPHOY KOHBEKIIUU HAJ
BPAIIAIOIENCS COEPON

Amoramin—IIpe/cTaBnen TeopeTHUECKH aHAIND NAMMHAPHON CMEILAHHOW KOHBEKUMM OKOJIO CthepH,

spamarowielica B notoke. Iloxasano BiHAHHE BsIKON AMCCHIALMH B MOrpaHHYHOM cioe. [Ipemnoxkeno

HOBOE KPHTEpHAJIbHOE COOTHOUICHHE s cpeaHero wucaa Hyccenvra (Ilepsyaa) npu uncne Ipanaras

(IImmzra), Bsmensiomemcs ot 0,7 a0 2730 npu npeneGpexenun >dpdexTaMn AUCCHNALHEHE. ITO COOTHO-

LIeHHE NOATBEPRIACTCE THCICHHLIMH H IKCTICPHMEHTANLHHIMA NaHHBIMH, OHO MPHMEHHMO U BCETO

pexHMa CMEIIaHHON KOHBEKIHHA B YCJIOBHAX TCYCHMS CO CHYTHOH NMOABEMHON CHIOH NpM MOCTOSHHOM
TeMInepaType CTEeHOK.



